Gallery Posets of Supersolvable Arrangements
نویسنده
چکیده
We introduce a poset structure on the reduced galleries in a supersolvable arrangement of hyperplanes. In particular, for Coxeter groups of type A or B, we construct a poset of reduced words for the longest element whose Hasse diagram is the graph of reduced words. Using Rambau’s Suspension Lemma, we show that these posets are homotopy equivalent to spheres. We furthermore conjecture that its intervals are either homotopy equivalent to spheres or are contractible. One may view this as a analogue of a result of Edelman and Walker on the homotopy type of intervals of a poset of chambers of a hyperplane arrangement. Résumé. Nous introduisons une structure d’ensemble ordonné sur les galeries réduites dans un arrangement d’hyperplans supersolvable. En particulier, pour les groupes de Coxeter de type A ou B, nous construisons un ensemble ordonné de mots réduits pour l’élément le plus long dont le diagramme de Hasse est le graphe de mots réduits. En utilisant le lemme de suspension de Rambau, nous montrons que ces ensembles ordonnés sont homotopiquement équivalents a des sphères. Nous conjecturons en outre que ses intervalles sont soit homotopiquement équivalents a des sphères ou bien ils sont contractile. On peut considérer cela comme un analogue d’un résultat d’Edelman et Walker sur le type d’homotopie d’intervalles d’un ensemble ordonné des chambres d’un arrangement d’hyperplans.
منابع مشابه
On the Cohen-Macaulay connectivity of supersolvable lattices and the homotopy type of posets
It is a well known fact that a supersolvable lattice is ELoshellable. Hence a supersolvable lattice (resp., its Stanley-Reisner ring) is Cohen-Macaulay. We prove that if L is a supersolvable lattice such that all intervals have non-vanishing Mt~bius number, then for an arbitrary element x e L the poser L {x} is also Cohen-Macaulay. Posets with this property are called 2-Cohen-Macaulay posets. I...
متن کاملSeveral Convex-Ear Decompositions
In this paper we give convex-ear decompositions for the order complexes of several classes of posets, namely supersolvable lattices with non-zero Möbius functions and rank-selected subposets of such lattices, rank-selected geometric lattices, and rank-selected face posets of shellable complexes which do not include the top rank. These decompositions give us many new inequalities for the h-vecto...
متن کاملSupersolvable LL-lattices of binary trees
Some posets of binary leaf-labeled trees are shown to be supersolvable lattices and explicit EL-labelings are given. Their characteristic polynomials are computed, recovering their known factorization in a different way.
متن کاملEL-labelings, supersolvability and 0-Hecke algebra actions on posets
It is well known that if a finite graded lattice of rank n is supersolvable, then it has an EL-labeling where the labels along any maximal chain form a permutation. We call such a labeling an Sn EL-labeling and we show that a finite graded lattice of rank n is supersolvable if and only if it has such a labeling. We next consider finite graded posets of rank n with 0̂ and 1̂ that have an Sn EL-lab...
متن کاملNice Reflection Arrangements
The aim of this note is a classification of all nice and all inductively factored reflection arrangements. It turns out that apart from the supersolvable instances only the monomial groups G(r, r, 3) for r > 3 give rise to nice reflection arrangements. As a consequence of this and of the classification of all inductively free reflection arrangements from Hoge and Röhrle (2015) we deduce that th...
متن کامل